258 WHITE RIVER BASIN ## 07066110 JACKS FORK ABOVE TWO RIVERS (Ambient water-quality monitoring network) ## WATER-QUALITY RECORDS LOCATION.--Lat $37^{\circ}10'22"$, long $91^{\circ}18'00"$, in NE 1/4 NW 1/4 sec.20, T.29 N., R.3 W., Shannon County, Hydrologic Unit 11010008, at Shawnee Campground, 4.5 mi downstream from the Eminence sewage disposal pond. DRAINAGE AREA. -- 425 mi². PERIOD OF RECORD. -- April 1973 to current year. REMARKS.--Ozark National Scenic Riverways station since April 1973 and ambient water-quality monitoring network station since November 1993. October and May data are located in the partial records section of this report. WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 | DATE | TIME | DIS-
CHARGE,
INST.
(CUBIC
FEET
PER
SECOND)
(00061) | TEMPER
ATURE
WATER
(DEG C | DUC
ANC
(µS) | E- WA
FIC WH
N- FI
CT- (ST
CE A | H
TER
OLE
ELD
AND-
RD
ITS) | OXYG
DI
SOL
(mg
(003 | EN,
S-
VED
/L) | DXYGE
DIS
SOLV
(PER
CEN
SATU
ATIC | S- DEN
YED CI
Y- IC
IT (I
IR- LEV
ON) (mg | GEN MAND, HEM- CAL HIGH JEL) B/L) | COL
FORI
FEC.
0.
µm-l
(COL
100 t | M, TO
AL, F
7 KF
MF (C
S./
mL) 10 | TREP-
COCCI
ECAL,
AGAR
OLS.
PER
0 mL)
1673) | WAT WH | | |------------------|--|---|---|---|---|--|--|---|---|---|-------------------------------------|--|--|--|---|--| | DEC 04 | 1121 | 193 | 9.5 | 5 3 | 386 | 7.9 | 11 | . 7 | 10 | 1 | | 1 | K5 | К8 | 196 | | | JAN
29 | 1138 | 326 | 6.0 |) 3 | 318 | 8.1 | 10 | . 2 | 8 | 14 | 100 | K | 13 | 7 | 166 | | | MAR
04 | 1032 | 220 | 6.0 |) 3 | 340 | 8.5 | 12 | . 2 | 9 | 16 | | 1 | K1 | К2 | 183 | | | APR
01 | 1100 | 1340 10.0 | |) 2 | 220 | 7.8 | 10 | 10.0 | | | | 2 | | 640 | 102 | | | JUN
10 | 1110 | 10 361 17.0 | |) 3 | 397 | 8.0 | | 10.0 1 | | .04 <1 | | 10 68 | | 62 | 158 | | | AUG
26 | 1100 | 208 | 21.5 | . 3 | 343 | 7.6 | 8 | .6 | 9 | 18 | | 2 | 60 | 50 | 178 | | | DATE | BICA
BONA
WAT
WH
FIE
(mg/L
HCC | TTE BON
TER WA
IT WH
LLD FI
Las (mg/
O ₃) C | TER IT NELD Las O ₃) | NITRO-
GEN,
IO ₂ +NO ₃
TOTAL
(mg/L
as N)
00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | GH
AMMO
TOT
(mg | FRO-
EN,
ONIA
FAL
g/L
(N) | NITE
GEN, A
MONIA
ORGAN
TOTA
(mg/
as
(0062 | AM-
A +
IIC
AL
/L | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665 | PHO
OR:
TO
(m | OS-
RUS
THO
TAL
g/L
s P)
507) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃) | S
Si
(1 | LCIUM
DIS-
DLVED
ng/L
Ca)
0915) | | | DEC
04
JAN | 2 | 244 | 0 | 0.330 | <0.010 | 0.0 | 020 | <0.2 | 20 | <0.020 | 0. | 010 | | | | | | 29
MAR | 2 | 200 | 0 | 0.440 | 0.010 | 0.0 | 020 | <0.2 | 20 | <0.020 | <0. | 010 | 170 | | 35 | | | 04
APR | 1 | .98 | 10 | 0.340 | <0.010 | 0.0 | 020 | <0.2 | 20 | <0.020 | 0. | 010 | | | | | | 01
JUN | 1 | .23 | 0 | 0.380 | <0.010 | 0.0 | 030 | 0.3 | 31 | 0.030 | 0. | 010 | | | | | | 10 | 1 | .92 | 0 0. | | <0.010 | 0.010 | | <0.2 | <0.20 < | | <0. | | | .60 33 | | | | 26 | 2 | 223 | 0 | 0.360 | <0.010 | 0.0 | 010 | <0.2 | 20 | <0.020 | <0. | 010 | | | | | | DATE | SI
DI
SOL
(mg | S- DI
VED SOL
J/L (m
Mg) as | DIUM,
S-
WED
ng/L
Na)
930) (| POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
00935) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RII
DI
SOI
(mg | CO-
DE,
IS-
LVED
g/L
C1) | FLUC
RIDE
DIS
SOLV
(mg/
as F | D-
E,
S-
/ED
/L
') | SOLIDS
RESIDUI
AT 180
DEG. (
DIS-
SOLVEI
(mg/L) | E TOT AT C DEG SU D PEN (m | 105
. C,
S- | ALUM-
INUM,
TOTAL
RECOV
ERABL
(µg/L
as Al | II
-]
E S(
()
) as | LUM-
NUM,
DIS-
DLVED
Lg/L
S Al) | | | JAN
29 | | 21 | 1.4 | 0.70 | 4.1 | 3. | . 2 | <0.1 | 10 | 180 | | 1 | 30 | <: | 20 | | | JUN
10 | | 19 | 1.5 | 1.0 | <0.20 | | .10 | <0.1 | | 310 | | 1 | 30 | | 5.0 | | | DATE | CADM
TOT
REC
ERA
(µg | IIUM CAL CAE COV- E ABLE SC I/L (µ Cd) as | MIUM C
DIS-
DLVED
.g/L
: Cd) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEA
TOT
REC
ERA
(µg | | LEAI
DIS
SOLV
(µg/
as I |),
S-
/ED
(L
?b) | MANGA-
NESE,
DIS-
SOLVEI
(µg/L
as Mn | TO
RE
Σ ER
(μ ₉ | CURY
TAL
COV-
ABLE
g/L
Hg)
900) | ZINC,
TOTAL
RECOV
ERABL
(µg/L
as Zn
(01092 | - 1
E S(
(| INC,
DIS-
DLVED
Lg/L
s Zn)
1090) | | | JAN
29
JUN | | <1 < | 1.0 | <1.0 | 4.0 | | <1 | <1. | . 0 | 1.4 | <0 | .10 | <4 | | <4.0 | | | 10 | | <1 < | 1.0 | <1.0 | 4.0 | | <1 | <1. | . 0 | 3.9 | < 0 | .10 | <1 | | <1.0 | | $K{\operatorname{\mathsf{--Results}}} \text{ are based on colony count outside the acceptable range (non-ideal colony count)}.$ WHITE RIVER BASIN 259